The new Zagreb indices of a class of dendrimers

M. GHORBANI
Department of Mathematics, Faculty of Science, Shahid Rajaee, Teacher Training University, Tehran, 16785-136, I. R. Iran

In the present study, we introduce two new versions of Zagreb indices. Let $\varepsilon(\mathrm{u})$ be the largest distance between u and any other vertex v of G. These new topological indices are defined as $M_{1}^{*}(G)=\sum_{u v \in E(G)} \varepsilon(u)+\varepsilon(v)$ and $\mathrm{M}_{2}^{*}(\mathrm{G})=\sum_{\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \varepsilon(\mathrm{u}) \varepsilon(\mathrm{v})$. The goal of this paper is computing these new topological indices of a class of dendrimer graphs.
(Received 20 July, 2010; accepted September 15, 2010)
Keywords: Dendrimer, Zagreb indices, Topological index

1. Introduction

The topological index of a molecule is a nonempirical numerical quantity that quantifies the structure and the branching pattern of the molecule. Let G be a simple molecular graph without directed and multiple edges and without loops, the vertex and edge-sets of which are represented by $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$, respectively. The distance $d(u, v)$ between two vertices u and v of a graph G is defined as the length of a shortest path connecting them. The Wiener index ${ }^{1}$ is the first reported distance based topological index and is defined as half sum of the distances between all the pairs of vertices in a molecular graph. For a given vertex u of $V(G)$ its eccentricity, $\varepsilon(u)$, is the largest distance between u and any other vertex v of G. The maximum eccentricity over all vertices of G is called the diameter of G and denoted by $\mathrm{D}(\mathrm{G})$ and the minimum eccentricity among the vertices of G is called radius of G and denoted by $R(G)$, see [2-10] for more details.

The Zagreb indices were introduced 30 years ago by Gutman and Trinajstić as $\mathrm{M}_{1}(\mathrm{G})=\operatorname{deg}(\mathrm{u})+\operatorname{deg}(\mathrm{v})$ and $\mathrm{M}_{2}(\mathrm{G})=\operatorname{deg}(\mathrm{u}) \operatorname{deg}(\mathrm{v})$, where $\operatorname{deg}(\mathrm{u})$ denotes the degree of vertex u [11-13]. Ghorbani et al. [14] defined a new version of Zagreb indices as follows:

$$
\begin{gathered}
\mathrm{M}_{1}^{*}(\mathrm{G})=\sum_{\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \varepsilon(\mathrm{u})+\varepsilon(\mathrm{v}) \text { and } \\
\mathrm{M}_{1}^{*}(\mathrm{G})=\sum_{\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \varepsilon(\mathrm{u}) \varepsilon(\mathrm{v})
\end{gathered}
$$

This paper addresses the problem of computing the eccentricity and then the new Zagreb indices of a special type of dendrimers. We encourage the readers to consult papers [15-20] for computational techniques related to dendrimers, as well as [21-23] for background materials. Our notation is standard and taken mainly from the standard books of graph theory.

2. Main result and discussion

In [15-20], Ghorbani computed some topological indices of some nanostructures. In this section the eccentricity of dendrimer T containing r layers is computed. From Fig. 1, it is clear that

$$
\begin{gathered}
|\mathrm{V}(\mathrm{~T})|=1+2\left[1+2+4+8+\ldots+2^{\mathrm{r}}\right]=2^{\mathrm{r}+2}-1 \\
|\mathrm{E}(\mathrm{~T})|=1+2\left[2+4+8+\ldots+2^{\mathrm{r}}\right]=2^{\mathrm{r}+2}-2
\end{gathered}
$$

Lemma 1. $\varepsilon(u)=r$.
Proof. Suppose u is the central vertex of T. Then from Fig. 1, one can see that the shortest path with maximum length is between u and a vertex w of the last layer.

The proof of lemma 1, shows that the eccentricity of vertex v is $r+1$. Because distance of every vertex of $k^{\text {th }}$ layer and the central vertex of T is k , so for every edge $\mathrm{e}=\mathrm{xy}$ in $\mathrm{k}^{\text {th }}$ layer, one can see that $\varepsilon(\mathrm{x})=\mathrm{k}$ and $\varepsilon(\mathrm{y})=\mathrm{k}+1$. So, it is easy to see that:
Theorem 2. Consider graph of dendrimer T depicted in Fig. 1. Then

$$
\begin{gathered}
M_{1}^{*}(T)=2 \sum_{i=1}^{r} 2^{i}[(r+i)+(r+i+1)]=2^{r+1}(4 r-3)-4 r+6, \\
M_{2}^{*}(T)=2 \sum_{i=1}^{r} 2^{i}(r+i)(r+i+1)=2^{r+1}\left(4 r^{2}-6 r+4\right)-2 r^{2}+6 r-8
\end{gathered}
$$

Corollary 3. Consider graph of dendrimer G depicted in Fig. 2. Then

$$
\begin{gathered}
M_{1}^{*}(G)=3 \sum_{i=1}^{r} 2^{i}[(r+i)+(r+i+1)]=3 \times 2^{r}(4 r-3)-6 r+9 \\
M_{2}^{*}(G)=3 \sum_{i=1}^{r} 2^{i}(r+i)(r+i+1)=3 \times 2^{r}\left(4 r^{2}-6 r+4\right)-3 r^{2}+9 r-12
\end{gathered}
$$

Fig. 1. Dendrimer T with $r=5$.

In the following lemma, the eccentricity of central vertex of T is computed.

Corollary 4. Consider graph of dendrimer H depicted in Fig. 3. Then

$$
M_{1}^{*}(H)=4 \sum_{i=1}^{r} 2^{i}[(r+i)+(r+i+1)]=2^{r+2}(4 r-3)-8 r+12
$$

Fig. 2. Dendrimer G with $r=5$.

Fig. 3. Dendrimer H with $r=5$.

References

[1] H. Wiener, J. Am. Chem. Soc. 69, 17 (1947).
[2] I. Gutman, K. C. Das, MATCH Commun. Math. Comput. Chem. 50, 83 (2004).
[3] V. Sharma, R. Goswami, A. K. Madan, J. Chem. Inf. Comput. Sci. 37, 273 (1997).
[4] H. Dureja, A. K. Madan, Med. Chem. Res. 16, 331 (2007).
[5] V. Kumar, S. Sardana, A. K. Madan, J Mol Model 10, 399 (2004).
[6] S. Sardana, A. K. Madan, MATCH Commun. Math. Comput. Chem. 43, 85 (2001).
[7] A. R. Ashrafi, M. Saheli, M. Ghorbani, J. Comput. Appl. Math., Doi:10.1016/j.cam.2010.03.001.
[8] M. A. Hosseinzadeh, M. Ghorbani, J. Optoelectron. Adv. Mater. 11, 1671 (2009).
[9] A. R. Ashrafi, M. Ghorbani, M. Jalali, J. Optoelectron. Adv. Mater. 3, 823 (2009).
[10] A. R. Ashrafi, M. Ghorbani, J. Optoelectron. Adv. Mater. 3, 596 (2009).
[11] S. Gupta, M. Singh, A. K. Madan, J. Math. Anal. Appl. 266, 259 (2002).
[12] I. Gutman, N. Trinajstic, Chem. Phys. Lett. 17, 535 (1972).
[13] J. Braun, A. Kerber, M. Meringer, C. Rucker, MATCH Commun. Math. Comput. Chem. 54, 163 (2005).
[14] M. Ghorbani, M. A. Hosseinzadeh, Filomat, 2010, accepted.
[15] M. V. Diudea, I. E. Kacso, O. M. Minailiuc, MATCH Commun. Math. Comput. Chem., 28, 61 (1992).
[16] M. V. Diudea, MATCH Commun. Math. Comput. Chem. 30, 79 (1994).
[17] M. V. Diudea, MATCH Commun. Math.Comput. Chem. 2, 71 (1995).
[18] M. V. Diudea, B. Parv, J. Chem. Inf. Comput. Sci. 35, 1015 (1995).
[19] M. V. Diudea, G. Katona, B. Parv, Croat.Chem. Acta, 70, 509 (1997).
[20] M. V. Diudea, A. A. Kiss, E. Estrada, N. Guevara, Croat. Chem. Acta, 73, 367 (2000).
[21] M. Ghorbani, M. Jalali, Iranian Journal of Mathematical Sciences and Informatics, 2, 61 (2007).
[22] A. R. Ashrafi, M. Ghorbani, M. Jalali and, Indian J. Chem., 47A, 535 (2008).
[23] H. Yousefi-Azari, B. Manoochehrian, A. R. Ashrafi, Ars Combinatoria, 84, 255 (2007).
*Corresponding author: mghorbani@srttu.edu

